Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 212(7): 1094-1104, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426888

RESUMO

Type 1 diabetes (T1D) is a prototypic T cell-mediated autoimmune disease. Because the islets of Langerhans are insulated from blood vessels by a double basement membrane and lack detectable lymphatic drainage, interactions between endocrine and circulating T cells are not permitted. Thus, we hypothesized that initiation and progression of anti-islet immunity required islet neolymphangiogenesis to allow T cell access to the islet. Combining microscopy and single cell approaches, the timing of this phenomenon in mice was situated between 5 and 8 wk of age when activated anti-insulin CD4 T cells became detectable in peripheral blood while peri-islet pathology developed. This "peri-insulitis," dominated by CD4 T cells, respected the islet basement membrane and was limited on the outside by lymphatic endothelial cells that gave it the attributes of a tertiary lymphoid structure. As in most tissues, lymphangiogenesis seemed to be secondary to local segmental endothelial inflammation at the collecting postcapillary venule. In addition to classic markers of inflammation such as CD29, V-CAM, and NOS, MHC class II molecules were expressed by nonhematopoietic cells in the same location both in mouse and human islets. This CD45- MHC class II+ cell population was capable of spontaneously presenting islet Ags to CD4 T cells. Altogether, these observations favor an alternative model for the initiation of T1D, outside of the islet, in which a vascular-associated cell appears to be an important MHC class II-expressing and -presenting cell.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Células Endoteliais , Antígenos de Histocompatibilidade Classe II , Inflamação/patologia , Camundongos Endogâmicos NOD
2.
Cell ; 187(3): 733-749.e16, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306984

RESUMO

Autoimmune diseases disproportionately affect females more than males. The XX sex chromosome complement is strongly associated with susceptibility to autoimmunity. Xist long non-coding RNA (lncRNA) is expressed only in females to randomly inactivate one of the two X chromosomes to achieve gene dosage compensation. Here, we show that the Xist ribonucleoprotein (RNP) complex comprising numerous autoantigenic components is an important driver of sex-biased autoimmunity. Inducible transgenic expression of a non-silencing form of Xist in male mice introduced Xist RNP complexes and sufficed to produce autoantibodies. Male SJL/J mice expressing transgenic Xist developed more severe multi-organ pathology in a pristane-induced lupus model than wild-type males. Xist expression in males reprogrammed T and B cell populations and chromatin states to more resemble wild-type females. Human patients with autoimmune diseases displayed significant autoantibodies to multiple components of XIST RNP. Thus, a sex-specific lncRNA scaffolds ubiquitous RNP components to drive sex-biased immunity.


Assuntos
Autoanticorpos , Doenças Autoimunes , RNA Longo não Codificante , Animais , Feminino , Humanos , Masculino , Camundongos , Autoanticorpos/genética , Doenças Autoimunes/genética , Autoimunidade/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação do Cromossomo X , Caracteres Sexuais
3.
Cells ; 12(24)2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132113

RESUMO

Atopic dermatitis (AD) is the most common chronic inflammatory skin disease and presents a major public health problem worldwide. It is characterized by a recurrent and/or chronic course of inflammatory skin lesions with intense pruritus. Its pathophysiologic features include barrier dysfunction, aberrant immune cell infiltration, and alterations in the microbiome that are associated with genetic and environmental factors. There is a complex crosstalk between these components, which is primarily mediated by cytokines. Epidermal barrier dysfunction is the hallmark of AD and is caused by the disruption of proteins and lipids responsible for establishing the skin barrier. To better define the role of cytokines in stratum corneum lipid abnormalities related to AD, we conducted a systematic review of biomedical literature in PubMed from its inception to 5 September 2023. Consistent with the dominant TH2 skewness seen in AD, type 2 cytokines were featured prominently as possessing a central role in epidermal lipid alterations in AD skin. The cytokines associated with TH1 and TH17 were also identified to affect barrier lipids. Considering the broad cytokine dysregulation observed in AD pathophysiology, understanding the role of each of these in lipid abnormalities and barrier dysfunction will help in developing therapeutics to best achieve barrier homeostasis in AD patients.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/patologia , Citocinas/metabolismo , Epiderme/metabolismo , Pele/patologia , Lipídeos
4.
Sci Transl Med ; 15(703): eade3614, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37406136

RESUMO

The endocrine pancreas is one of the most inaccessible organs of the human body. Its autoimmune attack leads to type 1 diabetes (T1D) in a genetically susceptible population and a lifelong need for exogenous insulin replacement. Monitoring disease progression by sampling peripheral blood would provide key insights into T1D immune-mediated mechanisms and potentially change preclinical diagnosis and the evaluation of therapeutic interventions. This effort has been limited to the measurement of circulating anti-islet antibodies, which despite a recognized diagnostic value, remain poorly predictive at the individual level for a fundamentally CD4 T cell-dependent disease. Here, peptide-major histocompatibility complex tetramers were used to profile blood anti-insulin CD4 T cells in mice and humans. While percentages of these were not directly informative, the state of activation of anti-insulin T cells measured by RNA and protein profiling was able to distinguish the absence of autoimmunity versus disease progression. Activated anti-insulin CD4 T cell were detected not only at time of diagnosis but also in patients with established disease and in some at-risk individuals. These results support the concept that antigen-specific CD4 T cells might be used to monitor autoimmunity in real time. This advance can inform our approach to T1D diagnosis and therapeutic interventions in the preclinical phase of anti-islet autoimmunity.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Linfócitos T CD4-Positivos , Diabetes Mellitus Tipo 1/metabolismo , Autoimunidade , Ilhotas Pancreáticas/metabolismo , Antígenos/metabolismo , Insulina/metabolismo , Camundongos Endogâmicos NOD
5.
Nat Biotechnol ; 41(2): 262-272, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35851375

RESUMO

Circular RNAs (circRNAs) are stable and prevalent RNAs in eukaryotic cells that arise from back-splicing. Synthetic circRNAs and some endogenous circRNAs can encode proteins, raising the promise of circRNA as a platform for gene expression. In this study, we developed a systematic approach for rapid assembly and testing of features that affect protein production from synthetic circRNAs. To maximize circRNA translation, we optimized five elements: vector topology, 5' and 3' untranslated regions, internal ribosome entry sites and synthetic aptamers recruiting translation initiation machinery. Together, these design principles improve circRNA protein yields by several hundred-fold, provide increased translation over messenger RNA in vitro, provide more durable translation in vivo and are generalizable across multiple transgenes.


Assuntos
RNA Circular , RNA , RNA Circular/genética , RNA/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Splicing de RNA
7.
Mol Cell ; 82(9): 1768-1777.e3, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358469

RESUMO

Circular RNAs are garnering increasing interest as potential regulatory RNAs and a format for gene expression. The characterization of circular RNA using analytical techniques commonly employed in the literature, such as gel electrophoresis, can, under differing conditions, yield different results when attempting to distinguish circular RNA from linear RNA of similar molecular weights. Here, we describe circular RNA migration in different conditions, analyzed by gel electrophoresis and high-performance liquid chromatography (HPLC). We characterize key parameters that affect the migration pattern of circular RNA in gel electrophoresis systems, which include gel type, electrophoresis time, sample buffer composition, and voltage. Finally, we demonstrate the utility of orthogonal analytical tests for circular RNA that take advantage of its covalently closed structure to further distinguish circular RNA from linear RNA following in vitro synthesis.


Assuntos
RNA Circular , RNA , Eletroforese em Gel de Ágar/métodos , Peso Molecular , RNA/genética , RNA Circular/genética
8.
Diabetes ; 68(10): 1886-1891, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31540941

RESUMO

Type 1 diabetes is the prototypical CD4 T cell-mediated autoimmune disease. Its genetic linkage to a single polymorphism at position 57 of the HLA class II DQß chain makes it unique to study the molecular link between HLA and disease. However, investigating this relationship has been limited by a series of anatomical barriers, the small size and dispersion of the insulin-producing organ, and the scarcity of appropriate techniques and reagents to interrogate antigen-specific CD4 T cells both in man and rodent models. Over the past few years, single-cell technologies, paired with new biostatistical methods, have changed this landscape. Using these tools, we have identified the first molecular link between MHC class II and the onset of type 1 diabetes. The translation of these observations to man is within reach using similar approaches and the lessons learned from rodent models.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Animais , Linfócitos T CD4-Positivos/patologia , Diabetes Mellitus Tipo 1/patologia , Humanos , Camundongos , Análise de Célula Única
9.
Sci Immunol ; 4(38)2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31471352

RESUMO

The class II region of the major histocompatibility complex (MHC) locus is the main contributor to the genetic susceptibility to type 1 diabetes (T1D). The loss of an aspartic acid at position 57 of diabetogenic HLA-DQß chains supports this association; this single amino acid change influences how TCRs recognize peptides in the context of HLA-DQ8 and I-Ag7 using a mechanism termed the P9 switch. Here, we built register-specific insulin peptide MHC tetramers to examine CD4+ T cell responses to Ins12-20 and Ins13-21 peptides during the early prediabetic phase of disease in nonobese diabetic (NOD) mice. A single-cell analysis of anti-insulin CD4+ T cells performed in 6- and 12-week-old NOD mice revealed tissue-specific gene expression signatures. TCR signaling and clonal expansion were found only in the islets of Langerhans and produced either classical TH1 differentiation or an unusual Treg phenotype, independent of TCR usage. The early phase of the anti-insulin response was dominated by T cells specific for Ins12-20, the register that supports a P9 switch mode of recognition. The presence of the P9 switch was demonstrated by TCR sequencing, reexpression, mutagenesis, and functional testing of TCRαß pairs in vitro. Genetic correction of the I-Aß57 mutation in NOD mice resulted in the disappearance of D/E residues in the CDR3ß of anti-Ins12-20 T cells. These results provide a mechanistic molecular explanation that links the characteristic MHC class II polymorphism of T1D with the recognition of islet autoantigens and disease onset.


Assuntos
Alelos , Diabetes Mellitus Tipo 1/imunologia , Insulina/imunologia , Complexo Principal de Histocompatibilidade/genética , Peptídeos/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Diabetes Mellitus Tipo 1/genética , Feminino , Complexo Principal de Histocompatibilidade/imunologia , Camundongos , Camundongos Endogâmicos NOD , Receptores de Antígenos de Linfócitos T/imunologia
11.
Mol Immunol ; 103: 191-199, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30300798

RESUMO

The difficulty of studying small tissue samples and rare cell populations have been some of the main limitations in performing efficient translational studies of immune mediated diseases. Many of these conditions are grouped under the name of a single disease whilst there are strong suggestions that disease heterogeneity leads to variable disease progression as well as therapeutic responses. The recent development of single cell techniques, such as single cell RNA sequencing, gene expression profiling, or multiparametric cytometry, is likely to be a turning point. Single cell approaches provide researchers the opportunity to finally dissect disease pathology at a level that will allow mechanistic classifications and precision therapeutic strategies. In this review, we will give an overview of the current and developing repertoire of single cell techniques, the benefits and limitations of each, and provide an example of how single cell techniques can be utilized to understand complex immune mediated diseases and their translation from mouse to human.


Assuntos
Perfilação da Expressão Gênica/métodos , Doenças do Sistema Imunitário/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Epigenômica/métodos , Humanos , Doenças do Sistema Imunitário/patologia , Espectrometria de Massas/métodos , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos
12.
Methods Mol Biol ; 1712: 217-238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29224077

RESUMO

The paucity of pathogenic T cells in circulating blood limits the information delivered by bulk analysis. Toward diagnosis and monitoring of treatments of autoimmune diseases, we have devised single-cell analysis approaches capable of identifying and characterizing rare circulating CD4 T cells.


Assuntos
Doenças Autoimunes/diagnóstico , Linfócitos T CD4-Positivos/imunologia , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Animais , Autoimunidade/genética , Biblioteca Gênica , Humanos , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Célula Única , Estatística como Assunto
13.
Anal Chem ; 89(2): 1254-1259, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27983788

RESUMO

The speed and throughput of analytical platforms has been a driving force in recent years in the "omics" technologies and while great strides have been accomplished in both chromatography and mass spectrometry, data analysis times have not benefited at the same pace. Even though personal computers have become more powerful, data transfer times still represent a bottleneck in data processing because of the increasingly complex data files and studies with a greater number of samples. To meet the demand of analyzing hundreds to thousands of samples within a given experiment, we have developed a data streaming platform, XCMS Stream, which capitalizes on the acquisition time to compress and stream recently acquired data files to data processing servers, mimicking just-in-time production strategies from the manufacturing industry. The utility of this XCMS Online-based technology is demonstrated here in the analysis of T cell metabolism and other large-scale metabolomic studies. A large scale example on a 1000 sample data set demonstrated a 10 000-fold time savings, reducing data analysis time from days to minutes. Further, XCMS Stream has the capability to increase the efficiency of downstream biochemical dependent data acquisition (BDDA) analysis by initiating data conversion and data processing on subsets of data acquired, expanding its application beyond data transfer to smart preliminary data decision-making prior to full acquisition.


Assuntos
Compressão de Dados/métodos , Mineração de Dados/métodos , Metabolômica/métodos , Linfócitos T/metabolismo , Compressão de Dados/economia , Mineração de Dados/economia , Humanos , Metabolômica/economia , Software , Fatores de Tempo , Fluxo de Trabalho
14.
Oncoimmunology ; 2(2): e22679, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23524444

RESUMO

Helper T cells become hyporesponsive in the tumor microenvironment (at least in part) owing to the NFAT1-dependent expression of anergy-associated genes. Anergy constitutes a crucial mechanism to prevent tumor destruction by T cells, and hence may represent a powerful target to boost antitumor immune responses and improve the efficacy of immunotherapy.

15.
Cancer Res ; 72(18): 4642-51, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22865456

RESUMO

Cancer cells express antigens that elicit T cell-mediated responses, but these responses are limited during malignant progression by the development of immunosuppressive mechanisms in the tumor microenvironment that drive immune escape. T-cell hyporesponsiveness can be caused by clonal anergy or adaptive tolerance, but the pathophysiological roles of these processes in specific tumor contexts has yet to be understood. In CD4+ T cells, clonal anergy occurs when the T-cell receptor is activated in the absence of a costimulatory signal. Here we report that the key T-cell transcription factor NFAT mediates expression of anergy-associated genes in the context of cancer. Specifically, in a murine model of melanoma, we found that cancer cells induced anergy in antigen-specific CD4+ T-cell populations, resulting in defective production of several key effector cytokines. NFAT1 deficiency blunted the induction of anergy in tumor antigen-specific CD4+ T cells, enhancing antitumor responses. These investigations identified tumor-induced T-cell hyporesponsiveness as a form of clonal anergy, and they supported an important role for CD4+ T-cell anergy in driving immune escape. By illustrating the dependence of tumor-induced CD4+ T-cell anergy on NFAT1, our findings open the possibility of targeting this transcription factor to improve the efficacy of cancer immunotherapy or immunochemotherapy.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Anergia Clonal/imunologia , Melanoma/imunologia , Melanoma/metabolismo , Fatores de Transcrição NFATC/imunologia , Evasão Tumoral/imunologia , Transferência Adotiva , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Camundongos , Camundongos Transgênicos , Fatores de Transcrição NFATC/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Microambiente Tumoral/fisiologia
16.
Immunol Rev ; 231(1): 225-40, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19754900

RESUMO

Cells that escape negative selection in the thymus must be inactivated or eliminated in the periphery through a series of mechanisms that include the induction of anergy, dominant suppression by regulatory T cells, and peripheral deletion of self-reactive T cells. Calcium signaling plays a central role in the induction of anergy in T cells, which become functionally inactivated and incapable of proliferating and expressing cytokines following antigen re-encounter. Suboptimal stimulation of T cells results in the activation of a calcium/calcineurin/nuclear factor of activated T cells-dependent cell-intrinsic program of self-inactivation. The proteins encoded by those genes are required to impose a state of functional unresponsiveness through different mechanisms that include downregulation of T-cell receptor signaling and inhibition of cytokine transcription.


Assuntos
Sinalização do Cálcio , Tolerância Imunológica , Fatores de Transcrição NFATC/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Citocinas/biossíntese , Citocinas/genética , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo
17.
J Exp Med ; 206(4): 867-76, 2009 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-19307325

RESUMO

In T cells, anergy can be induced after T cell receptor engagement in the absence of costimulation. Under these conditions, the expression of a specific set of anergy-associated genes is activated. Several lines of evidence suggest that nuclear factor of activated T cells (NFAT) proteins may regulate the expression of many of those genes; however, the nature of the complexes responsible for the induction of this new program of gene expression is unknown. Here, we show that transcriptional complexes formed by NFAT homodimers are directly responsible for the activation of at least two anergy-inducing genes, Grail and Caspase3. Our data shows that Grail expression is activated by direct binding of NFAT dimers to the Grail promoter at two different sites. Consequently, a mutant NFAT protein with impaired ability to dimerize is not able to induce an unresponsive state in T cells. Our results not only identify a new biological function for NFAT dimers but also reveal the different nature of NFAT-containing complexes that induce anergy versus those that are activated during a productive immune response. These data also establish a basis for the design of immunomodulatory strategies that specifically target each type of complex.


Assuntos
Tolerância Imunológica , Fatores de Transcrição NFATC/genética , Linfócitos T/imunologia , Transcrição Gênica , Caspase 3/genética , Dimerização , Regulação da Expressão Gênica , Humanos , Células Jurkat/imunologia , Mutação , Regiões Promotoras Genéticas , Receptores de Antígenos de Linfócitos T/imunologia , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...